博客
关于我
hdu 2899 Strange fuction
阅读量:123 次
发布时间:2019-02-27

本文共 1233 字,大约阅读时间需要 4 分钟。

基于Newton-Raphson方法的函数根求解

随着科学计算的广泛应用,高精度数值解法在解决实际问题中发挥着重要作用。本文将介绍一种高效的数值方法——Newton-Raphson方法,并展示其在函数根求解中的应用。

函数定义

首先,我们定义了一个函数 ( F(x, y) ) 如下:

[F(x, y) = x^{7} \times 6 + x^{6} \times 8 + x^{3} \times 7 + x^{2} \times 5 - y \times x]

该函数在区间 ( 0 \leq x \leq 100 ) 内定义,用于模型计算。

方法简介

Newton-Raphson方法是一种迭代优化算法,广泛应用于求解方程的根。其核心思想是通过反复逼近,逐步逼近方程的解。具体而言,算法通过选择区间内的中点并根据函数值的变化方向调整区间范围,最终收敛到方程的根。

算法步骤

1. 初始化

选择一个初始区间 ([l, r]),并计算区间的中点 ( lm ) 和 ( rm ):

[lm = \frac{2l + r}{3}][rm = \frac{l + 2r}{3}]

2. 适应性迭代

根据函数值的大小关系,调整区间范围:

  • 如果 ( F(lm, y) > F(rm, y) ),则说明 ( F(x) ) 在区间 ([lm, r]) 内单调递增,应将右端点 ( r ) 调整为 ( lm )。
  • 如果 ( F(lm, y) < F(rm, y) ),则说明 ( F(x) ) 在区间 ([l, rm]) 内单调递减,应将左端点 ( l ) 调整为 ( rm )。

3. 收敛

通过反复迭代上述步骤,逐步缩小区间范围,直到区间长度小于 ( 1 \times 10^{-7} ) 为止。

[\text{while} \ (r - l > 1 \times 10^{-7})]

代码实现

#include 
using namespace std;double solve(double l, double r, double y) { double lm, rm; while (r - l > 1e-7) { lm = (2 * l + r) / 3; rm = (l + 2 * r) / 3; if (F(lm, y) > F(rm, y)) { l = lm; } else if (F(lm, y) < F(rm, y)) { r = rm; } } return (l + r) / 2;}

适用性分析

该方法在多个实际场景中表现优异,尤其是在处理高精度需求的工程计算中。其收敛速度快、计算量小,能够在合理时间内完成复杂函数的根求解。

通过以上方法,我们可以高效地解决实际问题,得出准确的数值解。

转载地址:http://agnb.baihongyu.com/

你可能感兴趣的文章
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>